Critical growth elliptic problems involving Hardy-Littlewood-Sobolev critical exponent in non-contractible domains
نویسندگان
چکیده
منابع مشابه
Non-homogeneous semilinear elliptic equations involving critical Sobolev exponent
where λ > 0 is a parameter, κ ∈ R is a constant, p = (N + 2)/(N − 2) is the critical Sobolev exponent, and f(x) is a non-homogeneous perturbation satisfying f ∈ H−1(Ω) and f ≥ 0, f ≡ 0 in Ω. Let κ1 be the first eigenvalue of −Δ with zero Dirichlet condition on Ω. Since (1.1)λ has no positive solution if κ ≤ −κ1 (see Remark 1 below), we will consider the case κ > −κ1. Let us recall the results f...
متن کاملThe Solvability of Concave-Convex Quasilinear Elliptic Systems Involving $p$-Laplacian and Critical Sobolev Exponent
In this work, we study the existence of non-trivial multiple solutions for a class of quasilinear elliptic systems equipped with concave-convex nonlinearities and critical growth terms in bounded domains. By using the variational method, especially Nehari manifold and Palais-Smale condition, we prove the existence and multiplicity results of positive solutions.
متن کاملOn the quasilinear elliptic problem with a critical Hardy–Sobolev exponent and a Hardy term
In the present paper, a quasilinear elliptic problem with a critical Sobolev exponent and a Hardy-type term is considered. By means of a variational method, the existence of nontrivial solutions for the problem is obtained. The result depends crucially on the parameters p, t, s, λ and μ. c © 2007 Elsevier Ltd. All rights reserved. MSC: 35J60; 35B33
متن کاملA Non-Linear problem involving critical Sobolev exponent
We study the non-linear minimization problem on H 0 (Ω) ⊂ L q with q = 2n n−2 : inf ‖u‖ Lq =1 ∫ Ω (1 + |x| |u|)|∇u|. We show that minimizers exist only in the range β < kn/q which corresponds to a dominant nonlinear term. On the contrary, the linear influence for β ≥ kn/q prevents their existence.
متن کاملOn elliptic problems involving critical Hardy-Sobolev exponents and sign-changing function
In this paper, we deal with the existence and nonexistence of nonnegative nontrivial weak solutions for a class of degenerate quasilinear elliptic problems with weights and nonlinearity involving the critical Hardy-Sobolev exponent and a sign-changing function. Some existence results are obtained by splitting the Nerahi manifold and by exploring some properties of the best Hardy-Sobolev constan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Nonlinear Analysis
سال: 2019
ISSN: 2191-950X
DOI: 10.1515/anona-2020-0026